3.507 \(\int \frac {1}{(a+a \sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \, dx\)

Optimal. Leaf size=181 \[ -\frac {\cos (e+f x) \sqrt {c+d \sin (e+f x)}}{f (c-d) (a \sin (e+f x)+a)}+\frac {\sqrt {\frac {c+d \sin (e+f x)}{c+d}} F\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{a f \sqrt {c+d \sin (e+f x)}}-\frac {\sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{a f (c-d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}} \]

[Out]

-cos(f*x+e)*(c+d*sin(f*x+e))^(1/2)/(c-d)/f/(a+a*sin(f*x+e))+(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*
Pi+1/2*f*x)*EllipticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)*(d/(c+d))^(1/2))*(c+d*sin(f*x+e))^(1/2)/a/(c-d)/f/((c+
d*sin(f*x+e))/(c+d))^(1/2)-(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticF(cos(1/2*e+1
/4*Pi+1/2*f*x),2^(1/2)*(d/(c+d))^(1/2))*((c+d*sin(f*x+e))/(c+d))^(1/2)/a/f/(c+d*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2768, 2752, 2663, 2661, 2655, 2653} \[ -\frac {\cos (e+f x) \sqrt {c+d \sin (e+f x)}}{f (c-d) (a \sin (e+f x)+a)}+\frac {\sqrt {\frac {c+d \sin (e+f x)}{c+d}} F\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{a f \sqrt {c+d \sin (e+f x)}}-\frac {\sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{a f (c-d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]]),x]

[Out]

-((Cos[e + f*x]*Sqrt[c + d*Sin[e + f*x]])/((c - d)*f*(a + a*Sin[e + f*x]))) - (EllipticE[(e - Pi/2 + f*x)/2, (
2*d)/(c + d)]*Sqrt[c + d*Sin[e + f*x]])/(a*(c - d)*f*Sqrt[(c + d*Sin[e + f*x])/(c + d)]) + (EllipticF[(e - Pi/
2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/(a*f*Sqrt[c + d*Sin[e + f*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2768

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b
^2*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(b*c - a*d)*(a + b*Sin[e + f*x])), x] + Dist[d/(a*(b*c - a*
d)), Int[(c + d*Sin[e + f*x])^n*(a*n - b*(n + 1)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 0] && (IntegerQ[2*n] || EqQ[c, 0])

Rubi steps

\begin {align*} \int \frac {1}{(a+a \sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \, dx &=-\frac {\cos (e+f x) \sqrt {c+d \sin (e+f x)}}{(c-d) f (a+a \sin (e+f x))}+\frac {d \int \frac {-\frac {a}{2}-\frac {1}{2} a \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx}{a^2 (c-d)}\\ &=-\frac {\cos (e+f x) \sqrt {c+d \sin (e+f x)}}{(c-d) f (a+a \sin (e+f x))}+\frac {\int \frac {1}{\sqrt {c+d \sin (e+f x)}} \, dx}{2 a}-\frac {\int \sqrt {c+d \sin (e+f x)} \, dx}{2 a (c-d)}\\ &=-\frac {\cos (e+f x) \sqrt {c+d \sin (e+f x)}}{(c-d) f (a+a \sin (e+f x))}-\frac {\sqrt {c+d \sin (e+f x)} \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}} \, dx}{2 a (c-d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {\sqrt {\frac {c+d \sin (e+f x)}{c+d}} \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}} \, dx}{2 a \sqrt {c+d \sin (e+f x)}}\\ &=-\frac {\cos (e+f x) \sqrt {c+d \sin (e+f x)}}{(c-d) f (a+a \sin (e+f x))}-\frac {E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {c+d \sin (e+f x)}}{a (c-d) f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {F\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{a f \sqrt {c+d \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.15, size = 210, normalized size = 1.16 \[ \frac {\left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right ) \left (2 \sin \left (\frac {1}{2} (e+f x)\right ) (c+d \sin (e+f x))-\left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right ) \left ((c-d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} F\left (\frac {1}{4} (-2 e-2 f x+\pi )|\frac {2 d}{c+d}\right )-(c+d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} E\left (\frac {1}{4} (-2 e-2 f x+\pi )|\frac {2 d}{c+d}\right )+c+d \sin (e+f x)\right )\right )}{a f (c-d) (\sin (e+f x)+1) \sqrt {c+d \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]]),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(2*Sin[(e + f*x)/2]*(c + d*Sin[e + f*x]) - (Cos[(e + f*x)/2] + Sin[(e +
 f*x)/2])*(c + d*Sin[e + f*x] - (c + d)*EllipticE[(-2*e + Pi - 2*f*x)/4, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*
x])/(c + d)] + (c - d)*EllipticF[(-2*e + Pi - 2*f*x)/4, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])))/(
a*(c - d)*f*(1 + Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]])

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {d \sin \left (f x + e\right ) + c}}{a d \cos \left (f x + e\right )^{2} - a c - a d - {\left (a c + a d\right )} \sin \left (f x + e\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(d*sin(f*x + e) + c)/(a*d*cos(f*x + e)^2 - a*c - a*d - (a*c + a*d)*sin(f*x + e)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \sin \left (f x + e\right ) + a\right )} \sqrt {d \sin \left (f x + e\right ) + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(1/((a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)), x)

________________________________________________________________________________________

maple [A]  time = 3.47, size = 443, normalized size = 2.45 \[ \frac {\sqrt {-\left (-d \sin \left (f x +e \right )-c \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (-\frac {-\left (\sin ^{2}\left (f x +e \right )\right ) d -c \sin \left (f x +e \right )+d \sin \left (f x +e \right )+c}{\left (c -d \right ) \sqrt {\left (-d \sin \left (f x +e \right )-c \right ) \left (\sin \left (f x +e \right )-1\right ) \left (1+\sin \left (f x +e \right )\right )}}-\frac {2 d \left (\frac {c}{d}-1\right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {\frac {d \left (1-\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {\frac {\left (-\sin \left (f x +e \right )-1\right ) d}{c -d}}\, \EllipticF \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )}{\left (2 c -2 d \right ) \sqrt {-\left (-d \sin \left (f x +e \right )-c \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}-\frac {d \left (\frac {c}{d}-1\right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {\frac {d \left (1-\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {\frac {\left (-\sin \left (f x +e \right )-1\right ) d}{c -d}}\, \left (\left (-\frac {c}{d}-1\right ) \EllipticE \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )+\EllipticF \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )\right )}{\left (c -d \right ) \sqrt {-\left (-d \sin \left (f x +e \right )-c \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}\right )}{a \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x)

[Out]

(-(-d*sin(f*x+e)-c)*cos(f*x+e)^2)^(1/2)/a*(-(-sin(f*x+e)^2*d-c*sin(f*x+e)+d*sin(f*x+e)+c)/(c-d)/((-d*sin(f*x+e
)-c)*(sin(f*x+e)-1)*(1+sin(f*x+e)))^(1/2)-2*d/(2*c-2*d)*(c/d-1)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(d*(1-sin(f*x+e
))/(c+d))^(1/2)*((-sin(f*x+e)-1)*d/(c-d))^(1/2)/(-(-d*sin(f*x+e)-c)*cos(f*x+e)^2)^(1/2)*EllipticF(((c+d*sin(f*
x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))-d/(c-d)*(c/d-1)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(d*(1-sin(f*x+e))/(c+d)
)^(1/2)*((-sin(f*x+e)-1)*d/(c-d))^(1/2)/(-(-d*sin(f*x+e)-c)*cos(f*x+e)^2)^(1/2)*((-c/d-1)*EllipticE(((c+d*sin(
f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))+EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))))/cos(
f*x+e)/(c+d*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \sin \left (f x + e\right ) + a\right )} \sqrt {d \sin \left (f x + e\right ) + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\left (a+a\,\sin \left (e+f\,x\right )\right )\,\sqrt {c+d\,\sin \left (e+f\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + a*sin(e + f*x))*(c + d*sin(e + f*x))^(1/2)),x)

[Out]

int(1/((a + a*sin(e + f*x))*(c + d*sin(e + f*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {1}{\sqrt {c + d \sin {\left (e + f x \right )}} \sin {\left (e + f x \right )} + \sqrt {c + d \sin {\left (e + f x \right )}}}\, dx}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))/(c+d*sin(f*x+e))**(1/2),x)

[Out]

Integral(1/(sqrt(c + d*sin(e + f*x))*sin(e + f*x) + sqrt(c + d*sin(e + f*x))), x)/a

________________________________________________________________________________________